本發明屬于自動化技術領域,涉及一種批次化工過程的模型預測跟蹤控制方法。
背景技術:
在實際工業生產中,批次過程重復著相同的過程操作,其生產出的產品規格與質量對產品的市場價值有著決定性的影響,隨著市場的競爭,對產品規格與質量和操作精度要求越來越高,工藝過程變得更加復雜。為了滿足日益增長的產品質量要求,在批次處理過程中出現了一系列控制方法。例如,迭代學習控制方法、魯棒迭代學習控制方法,模型預測控制和迭代學習控制結合的批次過程控制方法等,但由于成本與質量的限制,簡單的過程控制方法已經無法滿足控制精度和平穩性的要求,產品合格率低,裝置效率低下,形成了從常規控制發展到復雜控制、先進控制等高級階段的要求。為解決在批次過程控制中未知因素擾動和更高的產品規格與質量的問題,進一步提高批次過程的控制性能,提出一種新的模型預測跟蹤控制方法是很有必要的。
技術實現要素:
本發明的目的是為改善批次生產過程中控制方法的跟蹤性能和抗干擾性,提出一種批次化工過程的模型預測跟蹤控制方法,將改進的狀態空間模型引入到模型預測控制和迭代學習控制方法中,以提高批次生產過程的控制性能。不同于傳統的狀態空間模型,在所提方法的狀態模型結構中,納入過程狀態變量和輸出跟蹤誤差動態組合,使用改進的過程模型。通過此種改進的技術手段,所得到的控制器具有更多的自由度來調節控制性能,得到更好的控制效果。
本發明的技術方案是通過數據采集、模型建立、預測機理、優化等手段,確立了一種批次化工過程的模型預測跟蹤控制方法,利用該方法可有效改善批次過程中控制方法的跟蹤性能和抗干擾性,利用該方法可有效提高控制的精度,提高控制平穩度。
本發明方法的步驟包括:
步驟1、建立批次過程中被控對象的狀態空間模型,具體是:
1.1首先采集批次過程中的輸入輸出數據,利用該數據建立該批次過程的模型,形式如下:
a(qt-1)y(t,k)=b(qt-1)u(t,k)
a(qt-1)=1+h1qt-1+h2qt-2+…+hmqt-m
b(qt-1)=l1qt-1+l2qt-2+…+lnqt-n
其中t,k分別是離散時間和循環指數,y(t,k)和u(t,k)分別是在第k周期中的t時刻的過程輸出和控制輸入,qt-1…qt-m,qt-1…qt-n分別是后移1…m,1…n位算子。h1,h2,…,hm;l1,l2,…,ln分別是多項式a(qt-1),b(qt-1)中相應的系數。m,n分別是a(qt-1),b(qt-1)的最大階次。
1.2將步驟1.1中模型進一步處理成如下形式:
a(qt-1)δty(t,k)=b(qt-1)δtu(t,k)
結合步驟1.1,上式可寫成如下形式:
δty(t+1,k)+h1δty(t,k)+…+hmδty(t-m+1,k)
=l1δtu(t,k)+l2δtu(t-1,k)+…+lnδtu(t-n+1,k)
其中,δt是時域后向差分算子,y(t+1,k)…y(t-m+1,k)和u(t,k)…u(t-n+1,k)分別是k周期在t+1,…,t-m+1和t,…,t-n+1時刻的過程輸出和控制輸入。
1.3選擇狀態空間向量,形式如下:
δtx(t,k)=[δty(t,k),δty(t-1,k),…,δty(t-m+1,k),
δtu(t-1,k),δtu(t-2,k),…,δtu(t-n+1,k)]t
其中,t為轉置符號。x(t,k)是第k周期t時刻的狀態變量。
相應的過程模型可以如下所示:
δtx(t+1,k)=aδtx(t,k)+bδtu(t,k)
δty(t+1,k)=cδtx(t+1,k)
其中,x(t+1,k)是第k周期t+1時刻的狀態變量。a,b,c分別為該過程模型的狀態矩陣、輸入矩陣和輸出矩陣。
b=[l100…10…0]t
c=[100…0000]
1.4在批次過程中,根據步驟1.3的過程模型,定義輸出跟蹤誤差e(t,k)如下所示:
e(t,k)=y(t,k)-yr(t,k)
其中,e(t,k)是第k周期里t時刻的輸出跟蹤誤差,y(t,k)和yr(t,k)分別是在第k周期里t時刻的過程輸出和參考軌跡,yr(t,k)采取以下形式:
yr(t+i,k)=ωiy(t,k)+(1-ωi)c(t+i)
其中yr(t+i,k)是第k周期里t+i時刻的參考軌跡,c(t+i)是t+i時刻的輸出設定值,ωi是t+i時刻的參考軌跡的平滑因子,i是預測步長。再結合步驟1.3,得到t+1時刻的輸出跟蹤誤差:
e(t+1,k)=e(t,k)+caδtx(t,k)+cbδtu(t,k)-δtyr(t+1,k)
e(t+1,k)是第k周期里t+1時刻的輸出跟蹤誤差,yr(t+1,k)是第k周期里t+1時刻的參考軌跡。
1.5選取擴展狀態向量xm(t,k):
將上述處理過程綜合為一個過程模型:
xm(t+1,k)=amxm(t,k)+bmδtu(t,k)+cmδtyr(t+1,k)
其中
xm(t+1,k)為該過程模型第k周期里t+1時刻的擴展狀態向量,am和cm中0是有著適當維度的0矩陣。
1.6對于步驟1.5,引入迭代更新控制,改進的狀態空間模型可以改寫為:
xm(t+1,k)=xm(t+1,k-1)+am(xm(t,k)-xm(t,k-1))
+bmr(t,k)+cm(δtyr(t+1,k)-δtyr(t+1,k-1))
其中,r(t,k)是第k周期里t時刻的更新法則,xm(t+1,k-1)、xm(t,k-1)分別為該過程模型第k-1周期里t+1,t時刻的擴展狀態向量。yr(t+1,k-1)是第k-1周期里t+1時刻的參考軌跡。
通過上式,狀態預測整理成矩陣形式,可以被描述為:
xm(k)=xm(k-1)+f(xm(t,k)-xm(t,k-1))
+φr(k)+s(yr(k)-yr(k-1))
其中,
步驟2、設計被控對象的批次過程控制器,具體是:
2.1為了在約束條件下跟蹤軌跡,并且在未知過程中保持期望的控制性能,選取被控對象的性能指標函數j,形式如下:
其中,p和m分是優化時域和控制時域,δt、δk分別是時域和周期后向差分算子,r(t+j,k)是第k周期里t+j時刻的更新法則,xm(t+i,k)為該過程模型第k周期里t+i時刻的擴展狀態向量,u(t+j,k)是第k周期里t+j時刻的參考軌跡,λ(i),α(j),β(j),γ(j)是相關權系數矩陣,其中i取值為1…p,j取值為1…m。
2.2根據步驟2.1,性能指標函數j可以改寫為以下形式:
j=λxm(k)2+αr(k)2+β(δtu(k-1)+r(k))2
+γ(δku(t-1)+ηr(k))2
其中,
2.3根據步驟2.2中的性能指標函數j,將其最小化可以得到最優更新法則r(k):
r(k)=-(φtλφ+α+β+ηtγη)-1(φtλ(f(xm(t,k)-xm(t,k-1))
+xm(k-1)+s(yr(k)-yr(k-1)))+βδtu(k-1)+ηtγδku(t-1))
取出r(k)的第一項r(t,k),最優控制量如下式:
u(t,k)=u(t,k-1)+u(t-1,k)-u(t-1,k-1)+r(t,k)
其中u(t,k),u(t-1,k)分別是第k周期里t和t-1時刻的控制輸入,u(t,k-1),u(t-1,k-1)分別是第k-1周期里t和t-1時刻的控制輸入。
由于周期1沒有歷史數據,其相應的最優更新定律和控制律可以通過普通mpc策略獲得如下:
r(k)=-(φtλφ+α)-1(φtλ(fxm(t,k)+syr(k)))
u(t,k)=u(t-1,k)+r(t,k)
得到的最優控制量u(t,k)作用于被控對象。
2.4在下一時刻,重復步驟2.1到2.3繼續求解新的最優控制量u(t+1,k),并依次循環。
本發明的有益效果:本發明提出了一種批次化工過程的模型預測跟蹤控制方法。通過此種改進的技術手段,所得到的控制器具有更多的自由度來調節控制性能,同時保證控制裝置操作在最佳狀態,使生產過程的工藝參數達到嚴格控制。有效的提高了傳統控制方法的性能并保證了系統在受到擾動時仍然具有良好的控制性能。
具體實施方式
以注塑成型工藝為例:
這里以注塑過程中保壓控制為例加以描述,調節手段是控制比例閥的閥門開度。
步驟1、建立保壓控制的輸入輸出模型,具體方法是:
1.1首先采集保壓控制過程的輸入輸出數據,利用該數據建立該保壓控制過程的模型,形式如下:
a(qt-1)y(t,k)=b(qt-1)u(t,k)
a(qt-1)=1+h1qt-1+h2qt-2+…+hmqt-m
b(qt-1)=l1qt-1+l2qt-2+…+lnqt-n
其中t,k分別是離散時間和循環指數,y(t,k)和u(t,k)是在k周期中的t時刻的保壓控制壓力大小和閥門開度,qt-1…qt-m,qt-1…qt-n分別是后移1…m,1…n位算子。h1,h2,…,hm與l1,l2,…,ln分別是多項式a(qt-1),b(qt-1)中相應系數。m,n分別是a(qt-1),b(qt-1)的最大階次。
1.2將步驟1.1中保壓控制過程模型進一步處理成如下形式:
a(qt-1)δty(t,k)=b(qt-1)δtu(t,k)
結合步驟1.1,上式可寫成如下形式:
δty(t+1,k)+h1δty(t,k)+…+hmδty(t-m+1,k)
=l1δtu(t,k)+l2δtu(t-1,k)+…+lnδtu(t-n+1,k)
其中,δt是t時域后向差分算子,y(t+1,k)…y(t-m+1,k)和u(t,k)…u(t-n+1,k)分別是k周期在t+1,…,t-m+1和t,…,t-n+1時刻的保壓控制的壓力輸出和保壓控制的閥門開度。
1.3選擇狀態空間向量,形式如下:
δtx(t,k)=[δty(t,k),δty(t-1,k),…,δty(t-m+1,k),
δtu(t-1,k),δtu(t-2,k),…,δtu(t-n+1,k)]t
其中,t為轉置符號。x(t,k)是第k周期t時刻的狀態變量。
相應保壓控制過程的過程模型如下所示:
δtx(t+1,k)=aδtx(t,k)+bδtu(t,k)
δty(t+1,k)=cδtx(t+1,k)
其中,x(t+1,k)是第k周期t+1時刻的狀態變量。a,b,c分別為該過程模型的狀態矩陣、輸入矩陣和輸出矩陣。
b=[l100…10…0]t
c=[100…0000]
1.4在保壓控制過程中,根據步驟1.3的過程模型,定義保壓控制過程的輸出跟蹤誤差e(t,k)如下所示:
e(t,k)=y(t,k)-yr(t,k)
其中,e(t,k)是第k周期里t時刻的輸出跟蹤誤差,y(t,k)和yr(t,k)分別是在第k周期里t時刻的實際保壓控制輸出壓力和參考軌跡,yr(t,k)采取以下形式:
yr(t+i,k)=ωiy(t,k)+(1-ωi)c(t+i)
其中yr(t+i,k)是第k周期t+i時刻的參考軌跡,c(t+i)是t+i時刻保壓控制的壓力設定值,ωi是t+i時刻的參考軌跡的平滑因子,i是預測步長。
再結合步驟1.3,可以得到t+1時刻的輸出跟蹤誤差:
e(t+1,k)=e(t,k)+caδtx(t,k)+cbδtu(t,k)-δtyr(t+1,k)
e(t+1,k)是第k周期里t+1時刻的輸出跟蹤誤差,yr(t+1,k)是第k周期t+1時刻的參考軌跡。
1.5選取新的擴展狀態向量:
將保壓控制過程綜合為如下過程模型:
xm(t+1,k)=amxm(t,k)+bmδtu(t,k)+cmδtyr(t+1,k)
其中
xm(t+1,k)為該保壓控制過程第k周期t+1時刻的擴展狀態向量,am和cm中0是有著適當維度的0矩陣。
1.6對于步驟1.5中的保壓控制過程,引入迭代更新控制,改進的狀態空間模型可以改寫為:
xm(t+1,k)=xm(t+1,k-1)+am(xm(t,k)-xm(t,k-1))
+bmr(t,k)+cm(δtyr(t+1,k)-δtyr(t+1,k-1))
其中,r(t,k)是第k周期里t時刻的更新法則,xm(t+1,k-1),xm(t,k-1)分別為保壓控制過程第k-1周期里t+1,t時刻的擴展狀態向量。yr(t+1,k),yr(t+1,k-1)分別是第k,k-1周期里t+1時刻的參考軌跡。通過上式,狀態預測整理成矩陣形式,可以被描述為:
其中,
步驟2、設計保壓控制批次過程控制器,具體是:
2.1為了跟蹤輸出壓力值,在未知的生產過程中保持期望的控制性能,選取保壓控制批次過程的性能指標函數j,形式如下:
其中,p和m分是預測時域和控制時域,δt、δk分別是時間和周期后向差分算子,r(t+j,k)是第k周期里t+j時刻的更新法則,xm(t+i,k)為保壓控制過程第k周期里t+i時刻的擴展狀態向量,u(t+j,k)是第k周期里t+j時刻的參考軌跡,λ(i),α(j),β(j),γ(j)是相關權系數矩陣,其中i取值為1…p,j取值為1…m。
2.2根據步驟2.1,性能指標函數j可以改寫為以下形式:
j=λxm(k)2+αr(k)2+β(δtu(k-1)+r(k))2
+γ(δku(t-1)+ηr(k))2
其中,
2.3通過最小化性能指標函數j,可以得到最優更新法則r(k):
r(k)=-(φtλφ+α+β+ηtγη)-1(φtλ(f(xm(t,k)-xm(t,k-1))
+xm(k-1)+s(yr(k)-yr(k-1)))+βδtu(k-1)+ηtγδku(t-1))
取出r(k)的第一項r(t,k),最優控制量如下式:
u(t,k)=u(t,k-1)+u(t-1,k)-u(t-1,k-1)+r(t,k)
其中u(t,k),u(t-1,k)分別是第k周期里t和t-1時刻的閥門開度,u(t,k-1),u(t-1,k-1)分別是第k-1周期里t和t-1時刻的閥門開度。
由于保壓控制批次過程的周期1沒有歷史數據,周期1的相應的最優更新定律和控制律可以通過普通mpc策略獲得如下:
r(k)=-(φtλφ+α)-1(φtλ(fxm(t,k)+syr(k)))
u(t,k)=u(t-1,k)+r(t,k)
得到的最優控制量u(t,k)作用于注塑機保壓控制的閥門。
2.4在下一時刻,重復步驟2.1到2.3繼續求解新的最優控制量u(t+1,k),并依次循環。